

ANL/MCS-TM-362

Performance Evaluation of Darshan 3.0.0 on the Cray
XC30

Mathematics and Computer Science Division

About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC
under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at
9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne
and its pioneering science and technology programs, see www.anl.gov.

DOCUMENT AVAILABILITY

Online Access: U.S. Department of Energy (DOE) reports produced after 1991 and a
growing number of pre-1991 documents are available free via DOE’s SciTech Connect
(http://www.osti.gov/scitech/)

Reports not in digital format may be purchased by the public from the
National Technical Information Service (NTIS):

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312
www.ntis.gov
Phone: (800) 553-NTIS (6847) or (703) 605-6000
Fax: (703) 605-6900
Email: orders@ntis.gov

Reports not in digital format are available to DOE and DOE contractors from the
Office of Scientific and Technical Information (OSTI):

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
www.osti.gov
Phone: (865) 576-8401
Fax: (865) 576-5728
Email: reports@osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States
Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document
authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne
National Laboratory, or UChicago Argonne, LLC.

ANL/MCS-TM-362

Performance Evaluation of Darshan 3.0.0 on the Cray XC30

Prepared by

S. Snyder, P. Carns, K. Harms, R. Latham, and R. Ross

Mathematics and Computer Science Division, Argonne National Laboratory

April 30, 2016

Performance Evaluation of Darshan 3.0.0 on the
Cray XC30

Shane Snyder, Philip Carns, Kevin Harms, Robert Latham, and Robert Ross
Argonne National Laboratory

January 2016

Abstract—Darshan is a lightweight I/O characterization tool
used to gather and summarize salient I/O workload statistics
from HPC applications. Darshan was designed to minimize any
possible perturbations of an application’s performance, leading it
to be enabled by default on a number of production HPC systems.
For each file accessed by a given application, Darshan records
the count and types of I/O operations performed, histograms
of access sizes, cumulative timers on the amount of time spent
doing I/O, and other statistical data. This type of data has proved
invaluable in understanding and improving the I/O performance
of HPC applications.

Darshan 3.0.0 is the new modularized version of the traditional
Darshan library and file format, allowing users to easily add more
in-depth I/O characterization data to Darshan logs. In this work
we perform an empirical evaluation of Darshan 3.0.0 to ensure
that it continues to meet performance expectations for broad
deployment. In particular, we evaluate the imposed overhead on
instrumented I/O operations, time taken to shut down and gener-
ate corresponding Darshan log files, and resultant log file sizes for
different workloads. These performance results are compared to
results of Darshan 2.3.0 on the Edison XC30 system at NERSC to
determine whether the new version is lightweight enough to run
full-time on production HPC systems. Our evaluation shows that
Darshan has limited impact on application I/O performance and
can fully generate a corresponding log file for most application
workloads in under two seconds.

I. BACKGROUND

Darshan’s design was explained in a prior publication [1],
which also includes an initial scalability analysis of the
Darshan instrumentation method. Follow-on research demon-
strated how Darshan could be to used to facilitate in-depth
analysis and optimization of the I/O performance of pro-
duction HPC applications [2]. Studies also have been done
of the performance of Darshan on Cray XE6 systems at
the University of Chicago/Argonne Computation Institute [3]
and at the National Energy Research Supercomputing Center
(NERSC) [4]. Each of these studies was performed with
previous versions of Darshan (2.x and earlier).

The intent of this study is to perform similar scalability
and overhead analyses of Darshan version 3.0.0 to determine
whether it is suitable for deployment on production HPC
systems. Before proceeding with a performance analysis, we
outline the design of Darshan 3.0.0 and indicate noteworthy
differences from prior versions.

II. DARSHAN 3.0.0 DESIGN

The primary motivation for redesigning Darshan was to
modularize its runtime library and log file format in order to

facilitate the addition of I/O characterization data from new
sources. For example, Darshan’s limited instrumentation of
the HDF5 and PnetCDF I/O libraries can be extended to glean
more information from applications using these data interfaces.
Also, platform- and file system–specific data can be captured
to correlate with Darshan data instrumented from I/O libraries.
Traditionally, Darshan has captured a fixed amount of data
from a few different I/O libraries (POSIX, MPI-IO, HDF5,
and PnetCDF) but has not exposed a well-defined mechanism
for instrumenting new data sources.

This new version meets each of Darshan’s original design
goals: scalability to leadership-scale HPC systems, trans-
parency to end users, and accuracy of application I/O char-
acterization. We also provide an additional design goal for
modularizing Darshan’s runtime library and log file format:
the specification of a well-defined interface for Darshan to
coordinate with “instrumentation modules” at runtime in or-
der to retrieve I/O characterization data from arbitrary data
sources.

The instrumentation module is a Darshan software com-
ponent that instruments I/O characterization data from some
specific source. Instrumentation modules are responsible for
defining the data they want to capture, implementing wrapper
functions to instrument this data from functions of interest, and
defining functions for interfacing with Darshan at shutdown
time. Before modules can gather instrumentation data, they
must register themselves with Darshan to obtain a memory
buffer for storing this data, as well as to indicate to Darshan
that the specific module is now active. As the application exe-
cutes, instrumentation modules intercept functions of interest
and extract necessary data to characterize the I/O behavior.
Darshan then iterates over active modules at shutdown time
to retrieve their corresponding instrumentation buffers, which
are then compressed and collectively written to the log file.

We modified the Darshan file format in order to handle
I/O characterization data sourced from potentially numerous
instrumentation modules. In particular, we made the log file
self-describing such that consumers could easily find and
extract data records belonging to different instrumentation
modules. This feature was not necessary in prior versions of
Darshan because log files contained only two distinct types
of data, a per-job record and a sequence of per-file records,
which were always located at the same logical positions in the
log file.

For reference, in Figure 1 we provide diagrams of the log

header job record name records POSIX records MPI-IO records

{

...

{ { {

(a) 3.0.0

job record file records

{

(b) 2.x

Fig. 1. Darshan log file formats

file formats for Darshan 3.0.0 as well as 2.x versions of
Darshan. The nonshaded portions of the file indicate regions
that are collected at a single root process (MPI rank 0), while
the shaded regions indicate regions that are gathered collec-
tively across all processes. Braces indicate log file regions
that are written by using collective operations (with each
process’s contributed buffer compressed independently), while
other regions are written independently by the root process.

The 3.0.0 file format consists of a header, a job record, and
a sequence of name records, followed by sequences of records
from each active module. The header stores information about
the log file format, including the offset and extent of each
region in the log file. Since the offset and extent information
of each module is known only after the module’s data has
been written, the header must be prepended to the log file at
the end of the shutdown procedure. Further, we must fix the
length of the header so the amount of space to preallocate
is known when Darshan begins to shut down, precluding the
use of compression on this structure. The job record stores
relevant job-level metadata corresponding to the instrumented
application. Name records store mappings between unique
Darshan identifiers (used for referencing files consistently
across modules) and their corresponding full path names.
Following the name record region are the sequences of file
records from each active instrumentation module, each written
by using distinct collective operations.

In contrast, the 2.x log file format consists solely of a job
record followed by a stream of Darshan file records. These
Darshan file records include data from numerous API levels
and a fixed-length suffix of the corresponding file name, rather
than storing complete path names as in Darshan 3.0.0. Each
Darshan 2.x log is written out by using a single collective
operation, with the root rank prepending the job record to its
sequence of file records.

III. TEST ENVIRONMENT

All experiments were performed on Edison, a Cray XC30
system at NERSC. Edison has 133,824 compute cores on
5,576 compute nodes with 357 terabytes of memory in ag-
gregate. All application data and Darshan logs were stored on
one of Edison’s scratch Lustre filesystems, which offer 2.1 PB
of total disk space and a peak performance of 48 GiB/sec.

Each experiment uses both Darshan 2.3.0 and Darshan
3.0.0-pre3 (a prerelease version of the new modularized
Darshan implementation) to compare overhead and other per-

formance metrics between the two versions. In both cases,
Darshan was compiled by using the GNU GCC compilers
available on Edison. Application executables were also built
by using the same compiler.

IV. PERFORMANCE ANALYSIS

In the following subsections, we analyze the impact of
Darshan instrumentation on application I/O performance, the
overhead of the Darshan shutdown procedure, and resultant
log file sizes for different I/O workloads.

A. Darshan instrumentation overhead

We first analyze the computational overhead of Darshan’s
method for instrumenting application I/O routines. Darshan
interposes a library of I/O wrappers at compile time (for stati-
cally linked executables) to intercept and instrument functions
of interest. Ideally, the process of interposing these wrappers
induces minimal overhead, in order to prevent Darshan from
perturbing overall application I/O performance. To measure
Darshan’s overhead, we can compare the amount of time
an example application spends doing I/O when Darshan in-
strumentation is enabled vs. disabled. We elect to use the
IOR benchmark as our example application, because of its
popularity in analyzing I/O performance on HPC systems and
its high degree of configurability, allowing for the emulation
of a range of relevant HPC workloads.

For these experiments, we configured IOR to use a file per
process workload, with each process performing I/O using
independent MPI-IO operations. Specifically, each of a total
of 4,800 application processes (on 200 Edison compute nodes)
writes a total of 512 MiB to its own unique file using access
sizes of 512 KiB. This workload results in an aggregate file
write size of 2,400 GiB and requires nearly 10 million total
MPI-IO and POSIX I/O operations (roughly 2,048 operations
per process). We built three different IOR executables for these
experiments: one with no Darshan instrumentation, one with
Darshan 2.3.0, and one with Darshan 3.0.0. We submitted 15
distinct jobs for each IOR version in an attempt to differentiate
normal system variance from deviations caused by Darshan.
Additionally, to combat system performance variation, we
took special care to run all three versions of the benchmark
within reasonable temporal timeframes on the same alloca-
tion of compute nodes. Specifically, we ran all versions of
the benchmark sequentially within the same job script, with
delays inserted between runs to help prevent I/O performance
from being impacted by previous benchmark executions. We
measured the I/O time of each benchmark using the total I/O
time reported by IOR, which is just a measure of the duration
between the time of the first open of an output file on any
process to the time of the last close on any process. We can
focus on a single scale for these experiments because the
overhead is unlikely to change with scale (Darshan does not
perform any I/O or communication within I/O wrappers).

In Figure 2, we provide box plots of the results of these tests
for each IOR version. These plots give the minimum, median,
and maximum results, as well as the 1st and 3rd quartiles,

 0

 20

 40

 60

 80

 100

 120

 140

 160

No Darshan Darshan 2.3.0 Darshan 3.0.0

I/
O

 t
im

e
 (

se
co

n
d
s)

Fig. 2. I/O time reported by an IOR file per process experiment with and
without Darshan instrumentation.

to provide an indication of the distribution of I/O times in
each case. We observe that Darshan appears to have little
impact on the I/O performance of the benchmark, with the
median I/O time actually showing a 3–4% decrease in each
case where Darshan is enabled (from 104.4 seconds to 101
and 99.9 seconds, respectively, for Darshan 2.3.0 and Darshan
3.0.0). The 1st and 3rd quartile results are also comparable,
indicating a high degree of similarity in I/O performance
distributions in each test case. We conclude that, as in previous
versions of Darshan, Darshan 3.0.0 introduces minimal (if any)
measurable runtime overhead.

B. Darshan shutdown overhead

Another important performance consideration of this study
is the time taken for Darshan to shut down and generate
a log characterizing a given application’s I/O behavior. In
general, the Darshan shutdown process involves aggregating
the output data across all processes, compressing this data,
and collectively writing this data out to the Darshan log file.
This process is invoked by Darshan after the application has
finished processing by intercepting MPI_Finalize().

We note that the shutdown mechanism in Darshan 3.0.0 is
more complex than the general procedure mentioned above
that Darshan has previously employed. This is a side effect of
the new modularized runtime environment and log file format
Darshan now uses, as described in Section II. In previous
versions, each process would accumulate all Darshan data into
a single buffer to be compressed and written collectively to log
file. In Darshan 3.0.0, however, the shutdown process proceeds
on a per-module basis, with each participating instrumentation
module taking turns collectively writing their compressed data
to log file. An additional collective write is used for logging
Darshan name records to file, and separate independent oper-
ations are used for writing the header and job information to
the log.

In these experiments, we compare the performance of the
shutdown process between both Darshan versions. We use
a low-level benchmark that injects synthetic Darshan data
records corresponding to different I/O workloads into the
Darshan runtime environment, rather than using the typical
I/O wrapper routines. We then invoke the Darshan shutdown

procedure and instrument the total time taken to complete this
process. For each workload and each Darshan version, we
collect 10 independent samples of the shutdown benchmark
to get a distribution of shutdown times. We also analyze the
shutdown benchmark at numerous job sizes, ranging from
2,400 application processes up to 12,000 processes, to evaluate
how the shutdown procedure scales in each version. Again,
special care was taken to prevent these benchmarks from
running concurrently and also to interleave the benchmark ex-
ecutions from each Darshan version. We consider cases where
an application uses both the MPI-IO and POSIX interfaces to
access either globally shared files or an independent file per
process, which are both typical of HPC applications that utilize
checkpointing mechanisms. For the shared file workloads,
Darshan uses MPI collective communication to determine
which file records are shared globally and then to reduce each
of these shared records into a single aggregate record. The
root process ends up with the reduced aggregate records and
is responsible for writing them to log file. As described earlier,
these shared file reductions must be performed independently
for each module in Darshan 3.0.0.

Figure 3 provides shutdown performance results for each
Darshan version when subjected to our target workloads. In
the results for the single shared file case given in Figure 3(a),
the shutdown times of each version show little discernible
difference, with each taking on average about 100 milliseconds
to shut down. This overhead remains mostly constant across
all scales, save a couple of outlier results. The results in
Figure 3(b) show a similar trend for a workload that accesses
1,024 globally shared files, although the average shutdown
time is understandably slightly longer in this case. These
results show that Darshan 3.0.0 can achieve shutdown perfor-
mance similar to that of Darshan 2.3.0 for shared file work-
loads, despite the extra complexity in its shutdown mechanism.
That is, the extra steps required to shut down on a per-module
basis, as well as to write the Darshan header and name record
structures to the log file, appear to have a limited impact on
the shutdown performance for these workloads.

The shutdown overhead results for a file per process work-
load are given in Figure 3(c). Unlike the previous example,
Darshan does not perform reductions of shared file records
in this case; instead it just uses collective I/O to write
out each process’s unique file record. As one might expect,
the corresponding shutdown times for these workloads scale
linearly with the job size. Darshan 3.0.0 attains slightly slower
shutdown times at smaller scales, with the performance dispar-
ity increasing with the job size. This is due to the modular log
format in Darshan 3.0.0: each module’s data is compressed and
written independently, thus leading to larger log files (as we
explain more in the following section) and more collective I/O
operations. Nevertheless, Darshan still aggregates, compresses,
and writes its characterization data in less than 2 seconds for
all configurations evaluated here.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2400 4800 7200 9600 12000

D
a
rs

h
a
n
 s

h
u
td

o
w

n
 t
im

e
 (

se
co

n
d
s)

Number of processes

Darshan 2.3.0
Darshan 3.0.0

(a) 1 shared file

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 2400 4800 7200 9600 12000

D
a
rs

h
a
n
 s

h
u
td

o
w

n
 t
im

e
 (

se
co

n
d
s)

Number of processes

Darshan 2.3.0
Darshan 3.0.0

(b) 1,024 shared files

 0

 0.5

 1

 1.5

 2

 2400 4800 7200 9600 12000

D
a
rs

h
a
n
 s

h
u
td

o
w

n
 t
im

e
 (

se
co

n
d
s)

Number of processes

Darshan 2.3.0
Darshan 3.0.0

(c) 1 file per process

Fig. 3. Shutdown time for each Darshan version when instrumenting typical
HPC I/O workloads.

C. Log file sizes

As another point of comparison, we consider the sizes
of log files generated by the synthetic shared file and file
per process benchmarks performed in the preceding section.
Table I gives the resultant log file sizes in each case using
Darshan’s standard runtime compression (libz), as well as the
total number of files instrumented in each case, the average
number of bytes per file record, and the percentage increase
from 2.3.0 logs to 3.0.0 logs. For reference, in Table II we
provide the (uncompressed) sizes of relevant log file regions
for both Darshan versions. Note that while Darshan 3.0.0 logs
have a fixed-length header prepended to the file, the job-level
record and the per-file records stored by Darshan are nearly
the same size in each version.

For the shared file benchmarks, we consider only one job
size because log file sizes for shared records are essentially
identical across scales (with differences related only to com-
pression efficiency). With a single shared file, there is a slight
20% increase in log file size from Darshan 2.3.0 to Darshan
3.0.0, which was expected because of the inclusion of a fixed-
length header in Darshan 3.0.0 logs. However, this percentage
increase in log file size actually grows to 100% in the case
of a workload accessing 1,024 shared files, even though both
Darshan versions are storing nearly the same amount of data
in each case. Similar results hold for log files generated by
file per process workloads, with a nearly 100% increase in
log file size at all scales evaluated. The reason is that each
module’s data (two modules are active in this example: MPI-
IO and POSIX) is compressed independently, thus leading to
less efficient overall compression. This tradeoff enables greater
flexibility and extensibility in how instrumentation data is
collected and organized within Darshan at the cost of increased
log file storage requirements. Still, the largest log file in this
experiment is less than 3 MiB in size.

D. Stress test

For our final test, we compare the performance of each
Darshan version when subjected to an extreme workload
atypical of production HPC systems. To do this, we consider
the shutdown overhead and log file size of a more heavyweight
versions of the file per process workload we considered in
earlier sections. Specifically, we modify the file per process
workload to use 1,024 unique files per process instead of

Workload Process Total Darshan 2.3.0 Darshan 3.0.0 Log Size
Count Files Log Size Per-File Size Log Size Per-File Size increase

1 shared 12,000 1 0.870 KiB 891.0 B 1.050 KiB 1,075.0 B 20.1%
1,024 shared 12,000 1,024 27.342 KiB 27.3 B 54.646 KiB 54.6 B 99.9%

1 FPP

2,400 2,400 0.279 MiB 121.8 B 0.518 MiB 226.2 B 85.8%
4,800 4,800 0.557 MiB 121.7 B 1.114 MiB 243.3 B 99.9%
7,200 7,200 0.836 MiB 121.8 B 1.672 MiB 243.5 B 99.9%
9,600 9,600 1.114 MiB 121.7 B 2.229 MiB 243.5 B 100.1%

12,000 12,000 1.395 MiB 121.9 B 2.789 MiB 243.7 B 99.9%

TABLE I
DARSHAN 2.3.0 AND 3.0.0 RESULTANT LOG FILE SIZES FOR TYPICAL FILE PER PROCESS AND SHARED FILE WORKLOADS.

TABLE II
LOG FILE COMPONENT SIZES FOR EACH DARSHAN

VERSION

Version Header Job Record File Record†

Darshan 2.3.0 – 1080 bytes 1328 bytes
Darshan 3.0.0 360 bytes 1064 bytes 1324 bytes
† Note: Since Darshan 3.0.0 has distinct file records for each

used module, we calculated the total file record size to be
the sum of the sizes of the POSIX and MPI-IO records
and the sum of the name record stored for each file. Name
records are variable in length, so we used the average size
of these records as observed in the benchmark results.

just one. A previous study of the systemwide I/O trends of
the Intrepid BG/P system at the ALCF using Darshan found
that no exemplar application accessed more than 140 files
per process [2]. These results offer insight into Darshan’s
performance when pushed beyond the limits of what would
typically be seen in production.

As expected, the shutdown performance of the 1,024 unique
files per process workload follows a similar trend to that of
the single file per process workload, with the shutdown time
scaling linearly with the number of processes. The shutdown
times are obviously longer than in the file per process case,
but we can see a slight improvement in the scalability of the
shutdown procedure for Darshan 3.0.0. This is likely due to
Darshan 3.0.0 being able to use larger writes as part of the
collective I/O algorithm, since each process contrbiutes 1,024
file records rather than just one. At the largest scale we tested
this workload, Darshan is able to shut down completely within
7 seconds even when collecting instrumentation data for over
12 million unique files.

The log files generated for this workload are orders of
magnitude larger than the single file per process workloads we
considered earlier, requiring on the order of hundreds of MiBs
of storage depending on the job size. However, we can see that
the percentage increase from Darshan 2.3.0 logs to Darshan

 0

 1

 2

 3

 4

 5

 6

 7

 2400 4800 7200 9600 12000

D
a
rs

h
a
n
 s

h
u
td

o
w

n
 t
im

e
 (

se
co

n
d
s)

Number of processes

Darshan 2.3.0
Darshan 3.0.0

Fig. 4. Shutdown time for each Darshan version when instrumenting a
heavyweight 1,024 file per process workload.

3.0.0 logs has been reduced from 100% to 80% compared with
the single file per process case. This is related to increased
compression efficiency made possible by compressing many
file records on the same process. As further evidence of the
increased compression efficiency, we see that the 1,024 file
per process workload results in around 50 bytes of log file
storage per tracked file compared with the 250 bytes required
for the single file per process workload.

E. Log archival

In this section, we provide results indicating how Darshan
3.0.0 logs can be archived to further reduce their long-
term storage requirements. As part of its set of log post-
processing utilities, Darshan includes a tool for converting
Darshan logs (i.e., darshan-convert) from their native
libz compression format to bzip2 compression instead. The
bzip2 compression format generally results in higher com-
pression efficiency, particularly for log files containing a lot
of data. However, the darshan-convert utility is able
to further optimize compression efficiency by condensing all
per-process compression streams for a given module into a

Workload Process total Darshan 2.3.0 Darshan 3.0.0 Log Size
count files Log Size Per-File Size Log Size Per-File Size Increase

1,024 FPP

2,400 2,457,600 61.282 MiB 26.1 B 111.511 MiB 47.6 B 82.0%
4,800 4,915,200 125.546 MiB 26.8 B 223.557 MiB 47.7 B 78.1%
7,200 7,372,800 185.651 MiB 26.4 B 335.228 MiB 47.7 B 80.6%
9,600 9,830,400 251.213 MiB 26.8 B 447.068 MiB 47.7 B 78.0%

12,000 12,288,000 309.414 MiB 26.4 B 558.980 MiB 47.7 B 80.7%

TABLE III
DARSHAN 2.3.0 AND 3.0.0 RESULTANT LOG FILE SIZES FOR A HEAVYWEIGHT 1,024 FILE PER PROCESS WORKLOAD.

Workload Process Total Original Converted Log Size
Count Files Size Size Decrease

1 shared 12,000 1 1.050 KiB 1.264 KiB -20.4%
1,024 shared 12,000 1,024 54.646 KiB 41.270 KiB 24.5%

1 FPP 12,000 12,000 2.789 MiB 706.040 KiB 75.3%
1,024 FPP 12,000 12,288,000 558.980 MiB 397.312 MiB 28.9%

TABLE IV
DARSHAN 3.0.0 LOG FILE SIZE COMPARISON BEFORE AND AFTER USING THE LOG CONVERT UTILITY.

single compression stream for the entire module, resulting in
even smaller output log files. This is especially useful for
file per process workloads where each process compresses
its data records independently before generating a log file.
Table IV provides results indicating the amount of space that
can be saved by converting Darshan logs to the bzip2 format.
We observe that the single file per process workload benefits
greatly from both bzip2 compression and the refactoring of
per-process compression streams into per-module compression
streams, resulting in a 75% reduction in log file size. We also
note that log files containing small amounts of data actually
become larger when using bzip2 compression, so it is best
suited for log files containing many file records.

Additionally, the darshan-parser utility (which is gen-
erally used to analyze Darshan log contents in text format)
includes flags that allow it to generate an aggregate I/O
characterization for all of an application’s accessed files. This
type of summary information is much smaller in size (i.e.,
one file record instead of a record for each file accessed by
the application), and is amenable to long-term storage. This
mechanism could be used to archive a constant size, coarse-
grained view of an application’s I/O behavior in a database
for easy retrieval, for instance.

The bz2 conversion strategy and the aggregate statistic
conversion strategy can both be performed by using periodic,
sequential cron jobs in order to reduce storage capacity de-
mands if needed on large-scale systems.

V. CONCLUSIONS

Our analysis of the overheads of Darshan 3.0.0 has showed
it to have a negligible impact on the performance of in-
strumented HPC applications. Specifically, we have showed
the overhead of the new modularized runtime architecture
is essentially transparent to application users. In an IOR
benchmark execution using 4,800 application processes and
performing nearly 10 million distinct instrumented I/O opera-
tions, we observed no noticeable perturbations in attained I/O
performance compared with a version of the benchmark not
linked with Darshan at all. We also demonstrated that while
the new shutdown method used by Darshan is less efficient
than prior versions, we can still generate Darshan log files in
under 2 seconds for a range of different I/O workloads and
job sizes typical of HPC systems. We also provided results
indicating the sizes of resultant Darshan log files for a number
of different benchmarks, with the average log file size per file
accessed by an application ranging anywhere from 50 to 250
bytes in the workloads we evaluated. We also identified the
root cause for increases in shutdown overheads and log file
sizes in Darshan 3.0.0, and we can revisit and potentially can
optimize the runtime architecture and file format if this proves
problematic in the future.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Department of Energy, Office of Science, Advanced Scientific
Computer Research, under contract DE-AC02-06CH11357.

This research used resources of the National Energy Research
Scientific Computing Center, a DOE Office of Science User
Facility supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231.

REFERENCES

[1] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7
characterization of petascale I/O workloads,” in IEEE International
Conference on Cluster Computing and Workshops, 2009. CLUSTER’09.
IEEE, 2009, pp. 1–10.

[2] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross, “Understanding and improving computational science storage
access through continuous characterization,” ACM Transactions on Stor-
age (TOS), vol. 7, no. 3, p. 8, 2011.

[3] P. Carns, K. Harms, R. Latham, and R. Ross, “Performance analysis of
Darshan 2.2.3 on the Cray XE6 platform.” Argonne National Laboratory
(ANL), Tech. Rep., 2012.

[4] P. Carns, Y. Yao, K. Harms, R. Latham, R. Ross, and K. Antypas,
“Production I/O characterization on the Cray XE6,” in Proceedings of
the Cray User Group meeting, vol. 2013, 2013.

Argonne National Laboratory is a U.S. Department of Energy
laboratory managed by UChicago Argonne, LLC

Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Avenue, Bldg. 240
Argonne, IL 60439

www.anl.gov

